| EvGaDeAd | Дата: Понедельник, 2012-01-16, 5:48 PM | Сообщение # 1 |
|
СОЗДАЁТ ГРУППУ
Группа: КРУТЫЕ АДМИНЫ
Сообщений: 407
Статус: Offline
| Гетерокарионы — клетки, содержащие два или более ядер, имеющих различные генотипы, которые получаются при слиянии соматических клеток. Гетерокарионы могут быть получены искусственно, слиянием клеток растений либо животных, обработкой клеток животных либо протопластов агентами, вызывающими слияние цитоплазматических мембран и, соответственно, слияние цитоплазм. В качестве агентов, вызывающих слияние, могут использоваться некоторые вирусы (например, вирус Сендай) либо поверхностно-активные вещества (лизолецитин, полиэтиленгликоль). При первом делении гетерокарионы, образованные из клеток животных, могут образовывать одноядерные клетки, при этом случайным образом утрачивается часть хромосом одной или обеих родительских клеток (образование анеуплоидов). Так, деление клеток содержащих гетерокарионы клеток человека и грызунов сопровождается потерей большей части хромосом человека с частым сохранением полного набора хромосом грызуна. Такие клетки, полученные слиянием соматических клеток и способные к дальнейшему делению, называют соматическими гибридами. Одно из перспективных направлений биотехнологии — искусственное получение химер (аллофенных животных). Понятие химера означает составное животное. Сущность метода получения химер заключается в искусственном объединении эмбриональных клеток двух и более животных. Животные могут быть как одной породы, так и разных пород и даже разных видов. Современная микрохирургия позволяет получать химер, имеющих 3—4 и более родителей. Химеры обладают признаками животных разных генотипов. Существует два основных метода получения химер искусственным путем: 1) агрегационный — объединение двух и более морул или бластоцист в один эмбрион; 2) инъекционный — микроинъекция клеток внутриклеточной массы (ВКМ) бластоцисты доноров в бластоцель эмбриона-реципиента. В обоих случаях получают особей, ткани и органы которых построены из клонов клеток объединенных (двух или более) эмбрионов. Первыми созданы химеры лабораторных мышей между линиями агути (кремовые) и не агути (черные). Они выглядели крапчатыми. Их окраска сочетала признаки обоих родителей: полосы пигментированной шерсти чередовались со светлыми, каждая полоса представляла клон клетки-родоначальницы. Их использование помогает изучению фундаментальных проблем дифференцировки клеток в процессе онтогенеза, многих вопросов механизма клеточного развития и происхождения отдельных тканей, иммунологического взаимодействия в развитии и т. д. Тканевая несовместимость - невозможность совместного существования клеток и тканей, принадлежащих генетически различным особям и различающихся антигенами. Благодаря существующему в природе генетическому разнообразию клетки и ткани любых двух особей различаются по множеству антигенов тканевой совместимости (называемых также антигенами гистосовместимости, трансплантационными антигенами). При пересадке органа или ткани (трансплантации) через короткий срок после приживления происходит отторжение трансплантата, повреждаемого лимфоцитами и цитотоксичными антителами организма-хозяина (реципиента). Совместимы только генетически однородные ткани, например ткани однояйцевых близнецов. Чтобы сделать совместимыми ткани генетически различающихся особей, нужно каким-то образом вмешаться в выражение генов гистосовместимости, вызвать подавление (репрессию) одних генов и компенсировать деятельность недостающих генов, а это остаётся пока невыполнимой задачей. При разведении лабораторных животных путём близкородственного скрещивания (брат - сестра, дети - родители) сравнительно легко можно вывести линии генетически сходных, а потому и совместимых особей. В трансплантационной иммунологии преодоление тканевой несовместимости достигается подавлением иммунного ответа реципиента и созданием иммунологической толерантности. Это не устраняет несовместимости как таковой, но обеспечивает сосуществование генетически разнородных тканей. Доказательства того, что половые хромосомы определяют пол организма, были получены при изучении нерасхождения половых хромосом у дрозофилы. Если в одну из гамет попадут обе половые хромосом, а в другую — ни одной, то при слиянии таких гамет с нормальными могут получиться особи с набором половых хромосом ХХХ, ХО, ХХУ и др. Выяснилось, что у дрозофилы особи с набором ХО — самцы, а с набором ХХУ — самки (у человека — наоборот). Особи с набором ХХХ имеют гипертрофированные признаки женского пола (сверхсамки). В дальнейшем было доказано, что у дрозофилы пол определяется соотношением (балансом) между числом X-хромосом и числом наборов аутосом. Гормональное определение пола. При изучении роли половых хромосом в развитии гонад было показано, что определяющим у человека является наличие или отсутствие Y-хромосомы. При отсутствии Y-хромосомы происходит дифференциация гонад в яичники и развивается женщина. В присутствии Y-хромосомы развивается мужская система. Очевидно, Y-хромосома производит вещество, стимулирующее дифференциацию яичек. Следующий этап продолжают гормоны, определяющие процесс половой дифференциации плода и его анатомическое развитие. При рождении первая часть программы заканчивается. После рождения эстафета переходит к факторам среды, которые завершают формирование пола—обычно, но не всегда в соответствии с генетическим полом. Это может приводить к появлению транссексуальности, возникновению гетеросексуального, бисексуального или гомосексуального поведения и образа жизни.
|
| |
|
|